Flow Interfaces

Compositional Abstractions for Concurrent Data Structures
Siddharth Krishna, Dennis Shasha, and Thomas Wies

NYU | COURANT ¢

Motivation Flows

Verifying concurrent data structures by only
reasoning about the small region modified
by each thread (compositional reasoning).

Highlights

Key idea: encode global data invariants as local conditions on the flow of nodes, an inductively
computed quantity. » Separation logic based abstraction

Example specification: nodes reachable from root form a tree « Handles unbounded sharing & overlays

Challenges Solution: compute number of paths from root to each node e LOCa reasoning for sha 0e a nd data
* Unbounded sharing and complex .
overlays Start with a flow domain (D, E, +,-,0,1) — here use N. Not tied to one traversal strategy

* Data invariants d d lobal sh : L
dla Invariants aepend on giobal shape * Data—structure—agnostlc composition and

abstraction lemmas

« Simple correctness proofs for complex
concurrent dictionary algorithms

G = (N, e) is a flow graph
e N: finite set of nodes

Examples: Harris’ non-blocking list (below),
e e:labels edges from D

B-link trees

Given aninflow in: N — D, compute
flow(in,G) : N - D

head flow(in, G) = Ifp (/IC.)Ln EN.in(n) + X ey C(') - e(n’,n))

Logic & Entailments

e (Can use any concurrent SL-like logic

* To demonstrate, we use rely-guarantee separation logic (RGSep)
 We add new predicates

Example specis now: Vn € N. flow(in,G)(n) <1
Flow Interface Algebras

free
root

(in’ G) is a flow interface graph These are parametrized by the good condition

e (: partial flow graph with outgoing edges

e in:inflowon G Gr(I) Graph region satisfying interface
Current approaches !
* Separation logic (SL) based logics G, Composition and decomposition: N(n,I) Singleton graph at n satisfying [

G, : -+ Defined inductively to preserve flows * Generic composition and decomposition:

* Inductive predicates to describe shape _ , ,
* Example: (in, G) = (iny, G;) © (in,, G,)

and data properties Gr(I) Ax € I'™

« Example: list segments N(x,I;) *Gr(k)) AL€ [®1; (DEcomp)
(Flow interface graphs, o) is a separation algebra
ls(x,y) = (x=yAemp)V = Can use as semantic model for SL
(3z. x » z * Is(z,y)) Gr(l,) *Gr(L)ANle 1 ® I
Gr(I) (Comp)

* Problem 1: definition tied to traversal
that visits every node exactly once

e How do we describe Harris’ list?

Abstractions: Flow Interfaces

Application: Verifying Concurrent Dictionaries
* Flow map of a flow graph:

We can prove memory safety and linearizability of

e Harris’ non-blocking singly linked list

* B+ trees with give-up based fine grained locking

Both use same flow abstraction and key invariants for linearizability

* Problem 2: predicates and lemmas are f = fm(G)(n,n,) = z pathproduct(p)
data-structure-specific p:n ~n,
* List composition:

Is(x,y) * Is(y,z) = ls(x, 2)

* Sorted list segment with upper and lower
bounds: sls(x,y,l,u)

e Different composition:

sls(x,y,,v) xsls(y,zw,u) A\v<w
= sls(x,z,l,u)

I = (in, f) is a flow interface
Lift composition to interfaces: I; @ I,

[(in, f)]s00a denotes all (in, G) s.t.
 fisflow mapof G
* Vn € G. good(n, flow(in, G)(n), G|,,) holds

Example:
good(n,p,) =p <1

Some nice properties:

@ is associative & commutative
1] o [I2] € [1; ° L]

Example: spec of B+ tree split method:
[(N(p, L) * N(c, I)) = Gr(I) |[A ™ = {r > (KS, 1)} .0 }

A = e/\I;(p,c) # (0,0) /\I;} = (Cp,t) NIZ = (C¢, 1)
split(c, p);
[(N(p, I) * N(c, I}) * N(n,In)) = Gr(I) | A I'"={re (KS,1)}.0]

/\If:e/\lj',a = (Cp,t) NI, = (C¢,t) NIF = (Cpyt) ACe = Co U Cyy

